Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - Review Exercises - Page 314: 74

Answer

$$y = - \frac{1}{4}\cos \left( {{x^2}} \right) + \frac{1}{4}$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = - \frac{1}{2}x\sin \left( {{x^2}} \right) \cr & {\text{Separate the variables}} \cr & dy = - \frac{1}{2}x\sin \left( {{x^2}} \right)dx \cr & {\text{Integrate both sides}} \cr & \int {dy} = - \frac{1}{2}\int {x\sin \left( {{x^2}} \right)} dx \cr & y = - \frac{1}{{2\left( 2 \right)}}\int {\sin \left( {{x^2}} \right)\left( {2x} \right)} dx \cr & y = - \frac{1}{4}\cos \left( {{x^2}} \right) + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Use the initial condition }}\left( {0,0} \right) \cr & 0 = - \frac{1}{4}\cos \left( {{0^2}} \right) + C \cr & C = \frac{1}{4} \cr & {\text{Substitute }}C{\text{ into }}\left( {\bf{1}} \right) \cr & y = - \frac{1}{4}\cos \left( {{x^2}} \right) + \frac{1}{4} \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.