Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - Review Exercises - Page 314: 65

Answer

$$ - \frac{1}{{30}}{\left( {1 - 3{x^2}} \right)^5} + C$$

Work Step by Step

$$\eqalign{ & \int {x{{\left( {1 - 3{x^2}} \right)}^4}} dx \cr & {\text{Integrate by substitution}} \cr & u = 1 - 3{x^2},{\text{ }}du = - 6xdx,{\text{ }}dx = - \frac{1}{{6x}}du \cr & {\text{Substituting}} \cr & \int {x{{\left( {1 - 3{x^2}} \right)}^4}} dx = \int {x{u^4}} \left( { - \frac{1}{{6x}}} \right)du \cr & = \int {{u^4}} \left( { - \frac{1}{6}} \right)du \cr & = - \frac{1}{6}\int {{u^4}} du \cr & = - \frac{1}{6}\left( {\frac{{{u^5}}}{5}} \right) + C \cr & = - \frac{1}{{30}}{u^5} + C \cr & {\text{Write in terms of }}x \cr & = - \frac{1}{{30}}{\left( {1 - 3{x^2}} \right)^5} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.