Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - Review Exercises - Page 314: 83

Answer

$$\frac{{468}}{7}$$

Work Step by Step

$$\eqalign{ & \int_1^9 {x\root 3 \of {x - 1} dx} \cr & {\text{Integrate by substitution}} \cr & {\text{Let }}u = x - 1,{\text{ }}x = u + 1,{\text{ }}dx = du \cr & {\text{The new limits of integration are:}} \cr & x = 9 \to u = 8 \cr & x = 1 \to u = 0 \cr & {\text{Substituting}} \cr & \int_1^9 {x\root 3 \of {x - 1} dx} = \int_0^8 {\left( {u + 1} \right)\root 3 \of u du} \cr & = \int_0^8 {\left( {u + 1} \right){u^{1/3}}du} \cr & = \int_0^8 {\left( {{u^{4/3}} + {u^{1/3}}} \right)du} \cr & = \left[ {\frac{3}{7}{u^{7/3}} + \frac{3}{4}{u^{4/3}}} \right]_0^8 \cr & = \left[ {\frac{3}{7}{{\left( 8 \right)}^{7/3}} + \frac{3}{4}{{\left( 8 \right)}^{4/3}}} \right] - \left[ {\frac{3}{7}{{\left( 0 \right)}^{7/3}} + \frac{3}{4}{{\left( 0 \right)}^{4/3}}} \right] \cr & {\text{Simplifying}} \cr & = \frac{{468}}{7} - 0 \cr & = \frac{{468}}{7} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.