Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - Review Exercises - Page 314: 84

Answer

$$A = 2$$

Work Step by Step

$$\eqalign{ & {\text{From the graph we can define the area as:}} \cr & A = \int_0^{\pi /2} {\left[ {\cos x + \sin \left( {2x} \right)} \right]} dx \cr & {\text{Integrate}} \cr & A = \left[ {\sin x - \frac{1}{2}\cos \left( {2x} \right)} \right]_0^{\pi /2} \cr & {\text{Evaluating}} \cr & A = \left[ {\sin \left( {\frac{\pi }{2}} \right) - \frac{1}{2}\cos \left( {2\left( {\frac{\pi }{2}} \right)} \right)} \right] - \left[ {\sin \left( 0 \right) - \frac{1}{2}\cos \left( {2\left( 0 \right)} \right)} \right] \cr & A = \left[ {\sin \left( {\frac{\pi }{2}} \right) - \frac{1}{2}\cos \left( \pi \right)} \right] - \left[ {\sin \left( 0 \right) - \frac{1}{2}\cos \left( 0 \right)} \right] \cr & A = 1 + \frac{1}{2} + \frac{1}{2} \cr & A = 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.