Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 206: 7

Answer

$f'\left( x \right) = 10x{\left( {2{x^3} - 5{x^2} + 4} \right)^4}\left( {3x - 5} \right)$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {\left( {2{x^3} - 5{x^2} + 4} \right)^5} \cr & {\text{Differentiate}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{{\left( {2{x^3} - 5{x^2} + 4} \right)}^5}} \right] \cr & {\text{Use The Power Rule Combined with the Chain Rule}} \cr & \frac{d}{{dx}}{\left[ {g\left( x \right)} \right]^n} = n{\left[ {g\left( x \right)} \right]^{n - 1}}g'\left( x \right) \cr & {\text{Therefore}}{\text{,}} \cr & f'\left( x \right) = 5{\left( {2{x^3} - 5{x^2} + 4} \right)^{5 - 1}}\frac{d}{{dx}}\left[ {2{x^3} - 5{x^2} + 4} \right] \cr & {\text{Computing derivatives}} \cr & f'\left( x \right) = 5{\left( {2{x^3} - 5{x^2} + 4} \right)^4}\left( {6{x^2} - 10x} \right) \cr & {\text{Factoring}} \cr & f'\left( x \right) = 5\left( {2x} \right){\left( {2{x^3} - 5{x^2} + 4} \right)^4}\left( {3x - 5} \right) \cr & f'\left( x \right) = 10x{\left( {2{x^3} - 5{x^2} + 4} \right)^4}\left( {3x - 5} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.