Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 206: 40

Answer

$G'\left( z \right) = - 6\sin z\cos z{\left( {1 + {{\cos }^2}z} \right)^2}$

Work Step by Step

$$\eqalign{ & G\left( z \right) = {\left( {1 + {{\cos }^2}z} \right)^3} \cr & {\text{Differentiate}} \cr & G'\left( z \right) = \frac{d}{{dz}}\left[ {{{\left( {1 + {{\cos }^2}z} \right)}^3}} \right] \cr & {\text{Use The Power Rule Combined with the Chain Rule}} \cr & G'\left( z \right) = 3{\left( {1 + {{\cos }^2}z} \right)^{3 - 1}}\frac{d}{{dz}}\left[ {1 + {{\cos }^2}z} \right] \cr & G'\left( z \right) = 3{\left( {1 + {{\cos }^2}z} \right)^2}\left[ {\frac{d}{{dz}}\left[ 1 \right] + \frac{d}{{dz}}\left[ {{{\cos }^2}z} \right]} \right] \cr & {\text{Apply the chain rule }} \cr & G'\left( z \right) = 3{\left( {1 + {{\cos }^2}z} \right)^2}\left[ {\frac{d}{{dz}}\left[ 1 \right] + 2\cos z\frac{d}{{dz}}\left[ {\cos z} \right]} \right] \cr & {\text{Compute derivatives and simplify}} \cr & G'\left( z \right) = 3{\left( {1 + {{\cos }^2}z} \right)^2}\left[ {0 + 2\cos z\left( { - \sin z} \right)} \right] \cr & G'\left( z \right) = 3{\left( {1 + {{\cos }^2}z} \right)^2}\left( { - 2\sin z\cos z} \right) \cr & G'\left( z \right) = - 6\sin z\cos z{\left( {1 + {{\cos }^2}z} \right)^2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.