Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 206: 5

Answer

$$\frac{dy}{dx}=\frac{e^\sqrt x}{2\sqrt x}$$

Work Step by Step

$$y=e^{\sqrt x}$$ $$\frac{dy}{dx}=\frac{d(e^{\sqrt x})}{dx}$$ Let $u=\sqrt x$ and $y=e^u$. Then, according to Chain Rule, $$\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}$$ $$\frac{dy}{dx}=\frac{d(e^u)}{du}\frac{d(\sqrt x)}{dx}$$ $$\frac{dy}{dx}=e^u\times\frac{d(x^{1/2})}{dx}$$ $$\frac{dy}{dx}=e^u\times\frac{1}{2}x^{-1/2}$$ $$\frac{dy}{dx}=e^{\sqrt x}\times\frac{1}{2\sqrt x}$$ $$\frac{dy}{dx}=\frac{e^\sqrt x}{2\sqrt x}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.