Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 206: 43

Answer

$g'\left( x\right) = \frac{{{e^x}}}{{{{\left( {1 + {e^x}} \right)}^2}}}\cos \left( {\frac{{{e^x}}}{{1 + {e^x}}}} \right)$

Work Step by Step

$$\eqalign{ & g\left( x \right) = \sin \left( {\frac{{{e^x}}}{{1 + {e^x}}}} \right) \cr & {\text{Differentiating}} \cr & g'\left( x \right) = \frac{d}{{dx}}\left[ {\sin \left( {\frac{{{e^x}}}{{1 + {e^x}}}} \right)} \right] \cr & {\text{Use the chain Rule }}\frac{d}{{dx}}\left[ {\sin u} \right] = \cos u\frac{{du}}{{dx}} \cr & g'\left( x \right) = \cos \left( {\frac{{{e^x}}}{{1 + {e^x}}}} \right)\underbrace {\frac{d}{{dx}}\left[ {\frac{{{e^x}}}{{1 + {e^x}}}} \right]}_{{\text{Use quotient rule}}} \cr & g'\left( x \right) = \cos \left( {\frac{{{e^x}}}{{1 + {e^x}}}} \right)\left[ {\frac{{\left( {1 + {e^x}} \right)\frac{d}{{dx}}\left[ {{e^x}} \right] - {e^x}\frac{d}{{dx}}\left[ {1 + {e^x}} \right]}}{{{{\left( {1 + {e^x}} \right)}^2}}}} \right] \cr & {\text{Compute derivatives and simplify}} \cr & g'\left( x \right) = \cos \left( {\frac{{{e^x}}}{{1 + {e^x}}}} \right)\left[ {\frac{{\left( {1 + {e^x}} \right){e^x} - {e^x}\left( {{e^x}} \right)}}{{{{\left( {1 + {e^x}} \right)}^2}}}} \right] \cr & g'\left( x \right) = \cos \left( {\frac{{{e^x}}}{{1 + {e^x}}}} \right)\left[ {\frac{{{e^x} + {e^{2x}} - {e^{2x}}}}{{{{\left( {1 + {e^x}} \right)}^2}}}} \right] \cr & g'\left( x \right) = \cos \left( {\frac{{{e^x}}}{{1 + {e^x}}}} \right)\left[ {\frac{{{e^x}}}{{{{\left( {1 + {e^x}} \right)}^2}}}} \right] \cr & g'\left( x \right) = \frac{{{e^x}}}{{{{\left( {1 + {e^x}} \right)}^2}}}\cos \left( {\frac{{{e^x}}}{{1 + {e^x}}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.