Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 206: 37

Answer

$f'\left( x \right) = 2x\sin \left( {1 - {x^2}} \right)\sin x + \cos \left( {1 - {x^2}} \right)\cos x$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \sin x\cos \left( {1 - {x^2}} \right) \cr & {\text{Differentiate}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\sin x\cos \left( {1 - {x^2}} \right)} \right] \cr & {\text{Use the product rule for derivatives}} \cr & f'\left( x \right) = \sin x\frac{d}{{dx}}\left[ {\cos \left( {1 - {x^2}} \right)} \right] + \cos \left( {1 - {x^2}} \right)\frac{d}{{dx}}\left[ {\sin x} \right] \cr & {\text{Apply the chain rule to }}\frac{d}{{dx}}\left[ {\cos \left( {1 - {x^2}} \right)} \right] \cr & f'\left( x \right) = \sin x\left[ { - \sin \left( {1 - {x^2}} \right)} \right]\frac{d}{{dx}}\left[ {1 - {x^2}} \right] + \cos \left( {1 - {x^2}} \right)\frac{d}{{dx}}\left[ {\sin x} \right] \cr & {\text{Computing derivatives}} \cr & f'\left( x \right) = - \sin x\sin \left( {1 - {x^2}} \right)\left( { - 2x} \right) + \cos \left( {1 - {x^2}} \right)\cos x \cr & {\text{Multiply and simplify}} \cr & f'\left( x \right) = 2x\sin \left( {1 - {x^2}} \right)\sin x + \cos \left( {1 - {x^2}} \right)\cos x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.