Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 206: 42

Answer

$y'=2e^{\sin2x}\cos2x+2e^{2x}\cos(e^{2x})$

Work Step by Step

$y=e^{\sin2x}+\sin(e^{2x})$ Differentiate each term: $y'=(e^{\sin2x})'+[\sin(e^{2x})]'=...$ Apply the chain rule to find $(e^{\sin2x})'$ and $[\sin(e^{2x})]'$: $...=(e^{\sin2x})(\sin2x)'+[\cos(e^{2x})](e^{2x})'=...$ Use the chain rule one more time to find $(\sin2x)'$ and $(e^{2x})'$: $...=(e^{\sin2x})(\cos2x)(2x)'+[\cos(e^{2x})](e^{2x})(2x)'=...$ $...=2e^{\sin2x}\cos2x+2e^{2x}\cos(e^{2x})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.