Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 206: 39

Answer

$F'\left( t \right) = \frac{{t{{\sec }^2}\sqrt {1 + {t^2}} }}{{\sqrt {1 + {t^2}} }}$

Work Step by Step

$$\eqalign{ & F\left( t \right) = \tan \sqrt {1 + {t^2}} \cr & {\text{Differentiate}} \cr & F'\left( t \right) = \frac{d}{{dt}}\left[ {\tan \sqrt {1 + {t^2}} } \right] \cr & {\text{Apply the chain rule}}{\text{, recall that }}\frac{d}{{dx}}\left[ {\tan x} \right] = {\sec ^2}x,{\text{ then}} \cr & F'\left( t \right) = {\sec ^2}\sqrt {1 + {t^2}} \frac{d}{{dt}}\left[ {\sqrt {1 + {t^2}} } \right] \cr & {\text{Apply the chain rule }} \cr & F'\left( t \right) = {\sec ^2}\sqrt {1 + {t^2}} \frac{d}{{dt}}\left[ {\sqrt {1 + {t^2}} } \right] \cr & {\text{Apply the general power rule}} \cr & F'\left( t \right) = {\sec ^2}\sqrt {1 + {t^2}} \left( {\frac{1}{2}} \right){\left( {1 + {t^2}} \right)^{ - 1/2}}\frac{d}{{dt}}\left[ {1 + {t^2}} \right] \cr & {\text{Differentiate and simplify}} \cr & F'\left( t \right) = {\sec ^2}\sqrt {1 + {t^2}} \left( {\frac{1}{2}} \right){\left( {1 + {t^2}} \right)^{ - 1/2}}\left( {2t} \right) \cr & F'\left( t \right) = {\sec ^2}\sqrt {1 + {t^2}} {\left( {1 + {t^2}} \right)^{ - 1/2}}t \cr & F'\left( t \right) = \frac{{t{{\sec }^2}\sqrt {1 + {t^2}} }}{{\sqrt {1 + {t^2}} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.