Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 206: 22

Answer

$G'\left( z \right) = \left( {1 - 4z} \right){\left( {{z^2} + 1} \right)^{ - 1/2}}\left( {z - 12{z^2} - 8} \right)$

Work Step by Step

$$\eqalign{ & G\left( z \right) = {\left( {1 - 4z} \right)^2}\sqrt {{z^2} + 1} \cr & {\text{Differentiate}} \cr & G'\left( z \right) = \frac{d}{{dz}}\left[ {{{\left( {1 - 4z} \right)}^2}\sqrt {{z^2} + 1} } \right] \cr & {\text{Use the product rule for derivatives}} \cr & G'\left( z \right) = {\left( {1 - 4z} \right)^2}\frac{d}{{dz}}\left[ {\sqrt {{z^2} + 1} } \right] + \sqrt {{z^2} + 1} \frac{d}{{dz}}\left[ {{{\left( {1 - 4z} \right)}^2}} \right] \cr & {\text{Use the chain rule}} \cr & G'\left( z \right) = {\left( {1 - 4z} \right)^2}\frac{1}{2}{\left( {{z^2} + 1} \right)^{ - 1/2}}\frac{d}{{dz}}\left[ {{z^2} + 1} \right] \cr & + 2\sqrt {{z^2} + 1} \left( {1 - 4z} \right)\frac{d}{{dz}}\left[ {1 - 4z} \right] \cr & {\text{Computing derivatives}} \cr & G'\left( z \right) = {\left( {1 - 4z} \right)^2}\frac{1}{2}{\left( {{z^2} + 1} \right)^{ - 1/2}}\left( {2z} \right) + 2\sqrt {{z^2} + 1} \left( {1 - 4z} \right)\left( { - 4} \right) \cr & {\text{Multiply}} \cr & G'\left( z \right) = z{\left( {1 - 4z} \right)^2}{\left( {{z^2} + 1} \right)^{ - 1/2}} - 8\sqrt {{z^2} + 1} \left( {1 - 4z} \right) \cr & {\text{Factor and simplify}} \cr & G'\left( z \right) = \left( {1 - 4z} \right){\left( {{z^2} + 1} \right)^{ - 1/2}}\left[ {z\left( {1 - 4z} \right) - 8\left( {{z^2} + 1} \right)} \right] \cr & G'\left( z \right) = \left( {1 - 4z} \right){\left( {{z^2} + 1} \right)^{ - 1/2}}\left( {z - 4{z^2} - 8{z^2} - 8} \right) \cr & G'\left( z \right) = \left( {1 - 4z} \right){\left( {{z^2} + 1} \right)^{ - 1/2}}\left( {z - 12{z^2} - 8} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.