Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 206: 47

Answer

$f'\left( x \right) = 4x{e^{{{\sin }^2}\left( {{x^2}} \right)}}\sin \left( {{x^2}} \right)\cos \left( {{x^2}} \right)$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {e^{{{\sin }^2}\left( {{x^2}} \right)}} \cr & {\text{Differentiating}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{e^{{{\sin }^2}\left( {{x^2}} \right)}}} \right] \cr & {\text{Use the chain rule: }}\frac{d}{{dx}}\left[ {{e^u}} \right] = {e^u}\frac{{du}}{{dx}} \cr & f'\left( x \right) = {e^{{{\sin }^2}\left( {{x^2}} \right)}}\frac{d}{{dx}}\left[ {{{\sin }^2}\left( {{x^2}} \right)} \right] \cr & {\text{Use the general power rule for derivatives}} \cr & f'\left( x \right) = {e^{{{\sin }^2}\left( {{x^2}} \right)}}\left( {2\sin \left( {{x^2}} \right)} \right)\frac{d}{{dx}}\left[ {\sin \left( {{x^2}} \right)} \right] \cr & {\text{Use the chain rule: }}\frac{d}{{dx}}\left[ {\sin u} \right] = \cos u\frac{{du}}{{dx}} \cr & f'\left( x \right) = 2{e^{{{\sin }^2}\left( {{x^2}} \right)}}\sin \left( {{x^2}} \right)\cos \left( {{x^2}} \right)\frac{d}{{dx}}\left[ {{x^2}} \right] \cr & {\text{Compute the derivative and simplify}} \cr & f'\left( x \right) = 2{e^{{{\sin }^2}\left( {{x^2}} \right)}}\sin \left( {{x^2}} \right)\cos \left( {{x^2}} \right)\left( {2x} \right) \cr & f'\left( x \right) = 4x{e^{{{\sin }^2}\left( {{x^2}} \right)}}\sin \left( {{x^2}} \right)\cos \left( {{x^2}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.