Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 206: 38

Answer

$f'\left( x \right) = - \left( {2x\sin {x^2} + \cos {x^2}} \right){e^{ - x}}$

Work Step by Step

$$\eqalign{ & g\left( x \right) = {e^{ - x}}\cos \left( {{x^2}} \right) \cr & {\text{Differentiate}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{e^{ - x}}\cos \left( {{x^2}} \right)} \right] \cr & {\text{Use the product rule for derivatives}} \cr & f'\left( x \right) = {e^{ - x}}\frac{d}{{dx}}\left[ {\cos \left( {{x^2}} \right)} \right] + \cos \left( {{x^2}} \right)\frac{d}{{dx}}\left[ {{e^{ - x}}} \right] \cr & {\text{Apply the chain rule}} \cr & f'\left( x \right) = {e^{ - x}}\left[ { - \sin \left( {{x^2}} \right)} \right]\frac{d}{{dx}}\left[ {{x^2}} \right] + \cos \left( {{x^2}} \right){e^{ - x}}\frac{d}{{dx}}\left[ { - x} \right] \cr & {\text{Computing derivatives}} \cr & f'\left( x \right) = {e^{ - x}}\left[ { - \sin \left( {{x^2}} \right)} \right]\left( {2x} \right) + \cos \left( {{x^2}} \right){e^{ - x}}\left( { - 1} \right) \cr & {\text{Multiply and simplify}} \cr & f'\left( x \right) = - 2x{e^{ - x}}\sin \left( {{x^2}} \right) - {e^{ - x}}\cos \left( {{x^2}} \right) \cr & f'\left( x \right) = - \left( {2x\sin {x^2} + \cos {x^2}} \right){e^{ - x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.