Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 206: 16

Answer

$y' = \frac{{\left( {\ln 5} \right)\left( {{5^{\sqrt x }}} \right)}}{{2\sqrt x }}$

Work Step by Step

$$\eqalign{ & y = {5^{\sqrt x }} \cr & {\text{Differentiate}} \cr & y' = \frac{d}{{dx}}\left[ {{5^{\sqrt x }}} \right] \cr & {\text{Let }}g\left( x \right) = \sqrt x ,{\text{ then}} \cr & y' = \frac{d}{{dx}}\left[ {{5^{g\left( x \right)}}} \right] \cr & {\text{By using the chain rule and }}\frac{d}{{dx}}\left[ {{b^x}} \right] = {b^x}\ln b{\text{ }} \cr & y' = {5^{g\left( x \right)}}\left( {\ln 5} \right)g'\left( x \right) \cr & {\text{Back - substitute }}g\left( x \right) = \sqrt x \cr & y' = {5^{\sqrt x }}\left( {\ln 5} \right)\frac{d}{{dx}}\left[ {\sqrt x } \right] \cr & y' = {5^{\sqrt x }}\left( {\ln 5} \right)\left( {\frac{1}{{2\sqrt x }}} \right) \cr & y' = \frac{{\left( {\ln 5} \right)\left( {{5^{\sqrt x }}} \right)}}{{2\sqrt x }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.