Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 206: 50

Answer

$\frac{{dy}}{{d\theta }} = \cos \left( {\theta + \tan \left( {\theta + \cos \theta } \right)} \right)\left( {1 + {{\sec }^2}\left( {\theta + \cos \theta } \right)\left( {1 - \sin \theta } \right)} \right)$

Work Step by Step

$$\eqalign{ & y = \sin \left( {\theta + \tan \left( {\theta + \cos \theta } \right)} \right) \cr & {\text{Differentiate}} \cr & \frac{{dy}}{{d\theta }} = \frac{d}{{d\theta }}\left[ {\sin \left( {\theta + \tan \left( {\theta + \cos \theta } \right)} \right)} \right] \cr & {\text{Use }}\frac{d}{{d\theta }}\left[ {\sin u} \right] = \cos u\frac{{du}}{{d\theta }} \cr & \frac{{dy}}{{d\theta }} = \cos \left( {\theta + \tan \left( {\theta + \cos \theta } \right)} \right)\frac{d}{{d\theta }}\left[ {\theta + \tan \left( {\theta + \cos \theta } \right)} \right] \cr & \frac{{dy}}{{d\theta }} = \cos \left( {\theta + \tan \left( {\theta + \cos \theta } \right)} \right)\left( {\frac{d}{{d\theta }}\left[ \theta \right] + \frac{d}{{d\theta }}\left[ {\tan \left( {\theta + \cos \theta } \right)} \right]} \right) \cr & {\text{Use }}\frac{d}{{d\theta }}\left[ {\tan u} \right] = {\sec ^2}u\frac{{du}}{{d\theta }} \cr & \frac{{dy}}{{d\theta }} = \cos \left( {\theta + \tan \left( {\theta + \cos \theta } \right)} \right)\left( {1 + {{\sec }^2}\left( {\theta + \cos \theta } \right)\left[ {\theta + \cos \theta } \right]'} \right) \cr & {\text{Compute derivatives}} \cr & \frac{{dy}}{{d\theta }} = \cos \left( {\theta + \tan \left( {\theta + \cos \theta } \right)} \right)\left( {1 + {{\sec }^2}\left( {\theta + \cos \theta } \right)\left( {1 - \sin \theta } \right)} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.