Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 206: 41

Answer

$y' = 4x\sin \left( {{x^2} + 1} \right)\cos \left( {{x^2} + 1} \right)$

Work Step by Step

$$\eqalign{ & y = {\sin ^2}\left( {{x^2} + 1} \right) \cr & {\text{Differentiate}} \cr & y' = \frac{d}{{dx}}\left[ {{{\sin }^2}\left( {{x^2} + 1} \right)} \right] \cr & {\text{Use The Power Rule Combined with the Chain Rule}} \cr & y' = 2\sin \left( {{x^2} + 1} \right)\frac{d}{{dx}}\left[ {\sin \left( {{x^2} + 1} \right)} \right] \cr & y' = 2\sin \left( {{x^2} + 1} \right)\cos \left( {{x^2} + 1} \right)\frac{d}{{dx}}\left[ {{x^2} + 1} \right] \cr & {\text{Compute derivative}} \cr & y' = 2\sin \left( {{x^2} + 1} \right)\cos \left( {{x^2} + 1} \right)\left( {2x} \right) \cr & {\text{Simplify}} \cr & y' = 4x\sin \left( {{x^2} + 1} \right)\cos \left( {{x^2} + 1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.