Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 206: 52

Answer

$$y'= 4{[x+{(x+\sin^2 x)}^3]}^3 [3{(x+\sin^2 x)}^2 (1+2\sin x\cos x)+1]$$

Work Step by Step

$y' = \frac{d}{dx} {[x+{(x+\sin^2 x)}^3]}^4$ By the chain rule: $= \frac{d{[x+{(x+\sin^2 x)}^3]}^4}{d[x+{(x+\sin^2 x)}^3]} \times \frac{d[x+{(x+\sin^2 x)}^3]}{dx}$ $= 4{[x+{(x+\sin^2 x)}^3]}^3 \times [\frac{d}{dx} [x]+\frac{d}{dx}[{(x+\sin^2 x)}^3]]$ Using the chain rule again: $= 4{[x+{(x+\sin^2 x)}^3]}^3 \times [1+\frac{d[{(x+\sin^2 x)}^3]}{d[{(x+\sin^2 x)}]} \times\frac{d[{(x+\sin^2 x)}]}{dx}]$ $= 4{[x+{(x+\sin^2 x)}^3]}^3 \times [1+3{(x+\sin^2 x)}^2 (1+2\sin x\cos x)]$ $= 4{[x+{(x+\sin^2 x)}^3]}^3 [3{(x+\sin^2 x)}^2 (1+2\sin x\cos x)+1]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.