Answer
$2log_{3}x+log_{3}(x-9)$
Work Step by Step
The product property of logarithms tells us that $log_{b}xy=log_{b}x+log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $log_{3}x^{2}(x-9)= log_{3}x^{2}+log_{3}(x-9)$.
The power property of logarithms tells us that $log_{b}x^{r}=r log_{b}x$ (where x and b are positive real numbers, $b\ne1$, and r is a real number).
Therefore, $ log_{3}x^{2}+log_{3}(x-9)=2log_{3}x+log_{3}(x-9)$.