Answer
$log_{7}5+log_{7}x-log_{7}4$
Work Step by Step
The quotient property of logarithms tells us that $log_{b}\frac{x}{y}=log_{b}x-log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $log_{7}\frac{5x}{4}=log_{7}5x-log_{7}4$.
The product property of logarithms tells us that $log_{b}xy=log_{b}x+log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $log_{7}5x-log_{7}4= log_{7}5+log_{7}x-log_{7}4$.