Answer
$log_{9}7-log_{9}8-log_{9}y$
Work Step by Step
The quotient property of logarithms tells us that $log_{b}\frac{x}{y}=log_{b}x-log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $log_{9}\frac{7}{8y}=log_{9}7-log_{9}8y$.
The product property of logarithms tells us that $log_{b}xy=log_{b}x+log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $ log_{9}7-log_{9}8y = log_{9}7-(log_{9}8+log_{9}y)= log_{9}7-log_{9}8-log_{9}y$.