Answer
$log_{6}4$
Work Step by Step
The product property of logarithms tells us that $log_{b}xy=log_{b}x+log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $log_{6}18+log_{6}2-log_{6}9= log_{6}(18\times2)-log_{6}9= log_{6}36-log_{6}9$.
The quotient property of logarithms tells us that $log_{b}\frac{x}{y}=log_{b}x-log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $ log_{6}36-log_{6}9=log_{6}\frac{36}{9}=log_{6}4$.