Answer
$log_{3}4+log_{3}y-log_{3}5$
Work Step by Step
The quotient property of logarithms tells us that $log_{b}\frac{x}{y}=log_{b}x-log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $log_{3}\frac{4y}{5}=log_{3}4y-log_{3}5$.
The product property of logarithms tells us that $log_{b}xy=log_{b}x+log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $ log_{3}4y-log_{3}5= log_{3}4+log_{3}y-log_{3}5$.