Answer
$log_{4}4=1$
Work Step by Step
The product property of logarithms tells us that $log_{b}xy=log_{b}x+log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $log_{4}2+log_{4}10-log_{4}5= log_{4}(2\times10)-log_{4}5= log_{4}20-log_{4}5$.
The quotient property of logarithms tells us that $log_{b}\frac{x}{y}=log_{b}x-log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $ log_{4}20-log_{4}5=log_{4}\frac{20}{5}=log_{4}4=1$.