Answer
$ log_{7}y^{2}z^{6}$
Work Step by Step
The power property of logarithms tells us that $log_{b}x^{r}=r log_{b}x$ (where x and b are positive real numbers, $b\ne1$, and r is a real number).
Therefore, $2log_{7}y+6log_{7}z= log_{7}y^{2}+log_{7}z^{6}$.
The product property of logarithms tells us that $log_{b}xy=log_{b}x+log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $ log_{7}y^{2}+log_{7}z^{6}= log_{7}(y^{2}\times z^{6})= log_{7}y^{2}z^{6}$.