Answer
$log_{4}48$
Work Step by Step
The power property of logarithms tells us that $log_{b}x^{r}=r log_{b}x$ (where x and b are positive real numbers, $b\ne1$, and r is a real number).
Therefore, $3log_{4}2+log_{4}6= log_{4}2^{3}+log_{4}6$.
The product property of logarithms tells us that $log_{b}xy=log_{b}x+log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $ log_{4}2^{3}+log_{4}6= log_{4}(2^{3}\times 6)= log_{4}(8\times 6)= log_{4}48$.