Answer
$log_{3}50$
Work Step by Step
The power property of logarithms tells us that $log_{b}x^{r}=r log_{b}x$ (where x and b are positive real numbers, $b\ne1$, and r is a real number).
Therefore, $2log_{3}5+log_{3}2= log_{3}5^{2}+log_{3}2$.
The product property of logarithms tells us that $log_{b}xy=log_{b}x+log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $ log_{3}5^{2}+log_{3}2= log_{3}(5^{2}\times 2)= log_{3}(25\times 2)= log_{3}50$.