Answer
$4log_{6}x+5log_{6}y$
Work Step by Step
The product property of logarithms tells us that $log_{b}xy=log_{b}x+log_{b}y$ (where x, y, and, b are positive real numbers and $b\ne1$).
Therefore, $log_{6}x^{4}y^{5}= log_{6}x^{4}+log_{6}y^{5}$.
The power property of logarithms tells us that $log_{b}x^{r}=r log_{b}x$ (where x and b are positive real numbers, $b\ne1$, and r is a real number).
Therefore, $ log_{6}x^{4}+log_{6}y^{5}= 4log_{6}x+5log_{6}y$.