Answer
$\frac{cos^2y}{1-sin~y}=1+sin~y$
Work Step by Step
We know that:
$sin^2y+cos^2y=1$
$cos^2y=1-sin^2y$
So:
$\frac{cos^2y}{1-sin~y}=\frac{1-sin^2y}{1-sin~y}=\frac{1^2-sin^2y}{1-sin~y}=\frac{(1+sin~y)(1-sin~y)}{1-sin~y}=1+sin~y$
You can help us out by revising, improving and updating this answer.
Update this answerAfter you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.