Answer
$\frac{sec^2x-1}{sin^2x}=sec^2x$
(e)
Work Step by Step
Use the Pythagorean Identity:
$tan^2x+1=sec^2x$
$tan^2x=sec^2x-1$
And: $tan~x=\frac{sin~x}{cos~x}$
$\frac{sec^2x-1}{sin^2x}=\frac{tan^2x}{\frac{sin^2x}{1}}=\frac{sin^2x}{cos^2x}\frac{1}{sin^2x}=\frac{1}{cos^2x}=sec^2x$