Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 7 - Applications of Trigonometry and Vectors - Section 7.5 - Applications of Vectors - 7.5 Exercises - Page 343: 62

Answer

$-24$

Work Step by Step

Let $u=\left\langle a,b\right \rangle$ and $v=\left\langle c,d\right \rangle$ be two vectors, then their dot product is given by $u\cdot v=\left\langle a,b\right \rangle \cdot \left\langle c,d\right \rangle=ac+bd$ and subtraction by $u-v=\left\langle a,b\right \rangle-\left\langle c,d\right \rangle=\left\langle a-c,b-d\right \rangle$ Now for $u=\left\langle -2,1\right \rangle$ , $v=\left\langle 3,4\right \rangle$ and $w=\left\langle -5,12\right \rangle$ we have $v-w=\left\langle 3,4\right \rangle -\left\langle -5,12\right \rangle$ $v-w= \left\langle 3-(-5),4-12\right \rangle=\left\langle 8,-8\right \rangle$ and $u\cdot (v-w)=\left\langle -2,1\right \rangle \cdot \left\langle 8,-8\right \rangle$ $u\cdot (v-w)=(-2)(8)+(1)(-8)=-16-8=-24$ . Therefore, $u\cdot (v-w)=-24$ .
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.