Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 7 - Applications of Trigonometry and Vectors - Section 7.5 - Applications of Vectors - 7.5 Exercises - Page 343: 59

Answer

$-6$

Work Step by Step

Let $u=\left\langle a,b\right\rangle$ and $v=\left\langle c,d\right\rangle$ be two vectors and $k$ be a real number, then: $ku=\left\langle ka,kb\right\rangle$ and $u\cdot v=ac+bd$ Now for $u=\left\langle -2,1\right\rangle$ and $v=\left\langle 3,4\right\rangle$ we have $3u=3\left\langle -2,1\right\rangle=\left\langle 3(-2),3(1)\right\rangle=\left\langle -6,3\right\rangle$ and $(3u)\cdot v=\left\langle -6,3\right\rangle\cdot \left\langle 3,4\right\rangle=(-6)(3)+(3)(4)=-18+12=-6 $ Hence, $(3u)\cdot v=-6$ .
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.