Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 7 - Applications of Trigonometry and Vectors - Section 7.5 - Applications of Vectors - 7.5 Exercises - Page 343: 61

Answer

$-24$

Work Step by Step

Let $u=\left\langle a,b\right \rangle$ and $v=\left\langle c,d\right \rangle$ be two vectors then their dot product is given by $u\cdot v=\left\langle a,b\right \rangle \cdot \left\langle c,d\right \rangle=ac+bd$ Now for $u=\left\langle -2,1\right \rangle$ , $v=\left\langle 3,4\right \rangle$ and $w=\left\langle -5,12\right \rangle$ we have $u\cdot v=\left\langle -2,1\right \rangle \cdot \left\langle 3,4\right \rangle$ $u\cdot v= (-2)(3)+(1)(4)=-6+4=-2$ and $u\cdot w=\left\langle -2,1\right \rangle \cdot \left\langle -5,12\right \rangle$ $u\cdot w=(-2)(-5)+(1)(12)=10+12=22$ . Therefore, $u\cdot v=-2$ and $u\cdot w=22$ . Now $u\cdot v-u\cdot w=-2-22=-24$ Hence, $u\cdot v-u\cdot w=-24$ .
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.