Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.3 Trigonometric Substitution - Exercises - Page 410: 3

Answer

see below answer

Work Step by Step

a) let $x$ = $\frac{3}{2}tanθ$ $dx$ = $\frac{3}{2}{sec^{2}θ}dθ$ and $\sqrt {4x^{2}+9}$ = $\sqrt {4(\frac{3}{2}tanθ)^{2}+9}$ = $\sqrt {9tan^{2}θ+9}$ = $3secθ$ so $I$ = ${\int}\frac{dx}{\sqrt {4x^{2}+9}}$ = ${\int}\frac{\frac{3}{2}sec^{2}θ}{3secθ}$ = $\frac{1}{2}\int{secθ}dθ$ =$\frac{1}{2}\ln|secθ+tanθ|+C$ b) $I$= $\frac{1}{2}\ln|secθ+tanθ|+C$ $x$ = $\frac{3}{2}tanθ$ $tanθ$ = $\frac{2x}{3}$ c) $I$= $\frac{1}{2}\ln|secθ+tanθ|+C$ $I$= $\frac{1}{2}\ln|\frac{\sqrt {4x^{2}+9}}{3}+\frac{2x}{3}|+C$ $I$= $\frac{1}{2}\ln|\frac{\sqrt {4x^{2}+9}+2x}{3}|+C$ $I$= $\frac{1}{2}\ln|{\sqrt {4x^{2}+9}+2x}|-\frac{1}{2}\ln3+C$ $I$= $\frac{1}{2}\ln|{\sqrt {4x^{2}+9}+2x}|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.