Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.3 Trigonometric Substitution - Exercises - Page 410: 32

Answer

$$\ln |\sqrt{x^{2}+1}+x|-\frac{x}{\sqrt{x^{2}+1}}+C$$

Work Step by Step

Given $$\int \frac{x^{2} d x}{\left(x^{2}+1\right)^{3 / 2}} $$ Let $$x=\tan u \ \ \ \ \to \ \ \ dx=\sec^2udu $$ Then \begin{align*} \int \frac{x^{2} d x}{\left(x^{2}+1\right)^{3 / 2}}&= \int \frac{\tan^{2}u\sec^2udu}{\left(\tan^{2}+1\right)^{3 / 2}} \\ &= \int \frac{\tan^{2}u\sec^2udu}{\sec^3u} \\ &= \int \frac{\tan^{2}u du}{\sec u} \\ &= \int \frac{(\sec^{2}u-1) du}{\sec u} \\ &= \int (\sec u-\cos u)du\\ &= \ln|\sec u+\tan u| -sin u+C\\ &= \ln |\sqrt{x^{2}+1}+x|-\frac{x}{\sqrt{x^{2}+1}}+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.