Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.3 Trigonometric Substitution - Exercises - Page 410: 13

Answer

a) $-\frac{1}{2}\int{\frac{du}{u^{\frac{1}{2}}}}$ b) $\int{sin^{2}θcos^{2}θdθ}$ c) $-\frac{1}{2}\int{(1-u)u^{\frac{1}{2}}}du$ d) $\int{sin^{4}θ}dθ$

Work Step by Step

a) let $u$ = $1-x^{2}$ $du$ =$-2xdx$ $\int{\frac{x}{\sqrt {1-x^{2}}}dx}$ = $-\frac{1}{2}\int{\frac{du}{u^{\frac{1}{2}}}}$ b) $x$ = $sinθ$ $dx$ = $cosθdθ$ $\int{x^{2}\sqrt {1-x^{2}}}dx$ = $\int{sin^{2}θ(cosθ)cosθdθ}$ = $\int{sin^{2}θcos^{2}θdθ}$ c) $u$ = $1-x^{2}$ $du$ =$-2xdx$ $\int{x^{3}\sqrt {1-x^{2}}}dx$ = $-\frac{1}{2}\int{x^{2}\sqrt {1-x^{2}}}(-2x)dx$ = $-\frac{1}{2}\int{(1-u)u^{\frac{1}{2}}}du$ d) $x$ = $sinθ$ $dx$ = $cosθdθ$ $\int{\frac{x^{4}}{\sqrt {1-x^{2}}}dx}$ =$\int{\frac{sin^{4}θ}{cosθ}}cosθdθ$ = $\int{sin^{4}θ}dθ$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.