Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.3 Trigonometric Substitution - Exercises - Page 410: 43

Answer

$$ \int \sec^{-1}xdx = x\sec^{-1}x-\ln | x+\sqrt{x^2-1}| +C$$

Work Step by Step

Given $$ \int \sec^{-1}xdx $$ Use integration by parts , let \begin{aligned} u&= \sec^{-1}x\ \ \ \ \ \ \ &dv&= dx\\ du&= \frac{dx}{x\sqrt{x^2-1}}\ \ \ \ \ \ \ & v&= x \end{aligned} Then \begin{aligned} \int \sec^{-1}xdx &= x\sec^{-1}x-\int \frac{dx}{\sqrt{x^2-1}} \end{aligned} To evaluate $\int \frac{dx}{\sqrt{x^2-1}}$, let $$x=\sec \theta \ \ \ \ \ dx=\sec \theta \tan \theta d\theta $$ Then \begin{aligned} \int \frac{dx}{\sqrt{x^2-1}}&=\int \frac{\sec \theta \tan \theta d\theta}{\sqrt{\sec^2\theta -1}}\\ &=\int \sec \theta d\theta \\ &=\ln |\sec \theta +\tan \theta |+c\\ &= \ln | x+\sqrt{x^2-1}| \end{aligned} Hence \begin{aligned} \int \sec^{-1}xdx &= x\sec^{-1}x-\ln | x+\sqrt{x^2-1}| +C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.