Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.3 Trigonometric Substitution - Exercises - Page 410: 45

Answer

\begin{aligned} \int \ln(x^2+1)dx&=x\ln(x^2+1)-2 x-2\tan^{-1}x+c \end{aligned}

Work Step by Step

Given $$ \int \ln(x^2+1)dx $$ Use integration by parts , let \begin{aligned} u&= \ln(x^2+1)\ \ \ \ \ \ \ &dv&= dx\\ du&= \frac{2xdx}{x^2+1}\ \ \ \ \ \ \ & v&= x \end{aligned} Then \begin{aligned} \int \ln(x^2+1)dx&=x\ln(x^2+1)-2\int \frac{x^2dx}{x^2+1} \end{aligned} To evaluate $\int \dfrac{x^2dx}{x^2+1}$, let $$x=\tan \theta \ \ \ \ \ dx=\sec^2 \theta d\theta $$ Then \begin{aligned} \int\dfrac{x^2dx}{x^2+1}&=\int \dfrac{\tan^2\theta \sec^2\theta d\theta }{\tan^2\theta +1}\\ &=\int \tan^2\theta d\theta \\ &=\int( \sec^2 \theta-1) d\theta \\ &=\tan \theta - \theta +c\\ &= x+\tan^{-1}x+c \end{aligned} Hence \begin{aligned} \int \ln(x^2+1)dx&=x\ln(x^2+1)-2 x-2\tan^{-1}x+c \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.