Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.3 Trigonometric Substitution - Exercises - Page 410: 22

Answer

$$-3(9-x^2)^{3/2}+\frac{1}{5}(9-x^2)^{5/2}+C$$

Work Step by Step

\begin{aligned} \int x^{3} \sqrt{9-x^{2}} d x &=\int(3 \sin \theta)^{3} \sqrt{9-(3 \sin \theta)^{2}} \cdot 3 \cos \theta d \theta \\ &=\int 27 \sin ^{3} \theta \sqrt{9-9 \sin ^{2} \theta} \cdot 3 \cos \theta d \theta \\ &=81 \int \sin ^{3} \theta \cos \theta \cdot 3 \sqrt{1-\sin ^{2} \theta} d \theta \\ &=243 \int \sin ^{3} \theta \cos \theta \sqrt{\cos ^{2} \theta} d \theta \\ &=243 \int \sin ^{3} \theta \cos ^{2} \theta d \theta\\ &= 243 \int (1- \cos ^{2} \theta ) \cos ^{2} \theta \sin \theta d \theta\\ &= 243 \int (\cos ^{2} \theta- \cos ^{4} \theta ) \sin \theta d \theta\\ &=-243\left(\frac{1}{3}\cos ^{3} \theta +\frac{1}{5} \cos ^{5} \theta\right) +C\\ &= -243 \left(\frac{1}{3}\left( \frac{\sqrt{9-x^{2}}}{3}\right)^3+\frac{1}{5}\left( \frac{\sqrt{9-x^{2}}}{3}\right)^5\right)+C \\ & = -3(9-x^2)^{3/2}+\frac{1}{5}(9-x^2)^{5/2}+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.