Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.3 Trigonometric Substitution - Exercises - Page 410: 30

Answer

$$\frac{1}{4}+\frac{3 \pi}{32}$$

Work Step by Step

Given $$\int_{0}^{1} \frac{d x}{\left(x^{2}+1\right)^{3}}$$ Let $$x= \tan u\ \ \ \ \ \to \ \ \ dx= \sec^2 udu $$ At $x=0\ \ \to \ \ u=0$, at $x=1\ \ \to \ \ u=\pi/4$, then \begin{align*} \int_{0}^{1} \frac{d x}{\left(x^{2}+1\right)^{3}}&=\int_{0}^{\pi/4} \frac{\sec^2 udu}{\left(\tan ^{2}u+1\right)^{3}}\\ &=\int_{0}^{\pi/4} \frac{du}{\sec^4 u}\\ &=\int_{0}^{\pi/4} \cos^4 udu\\ &= \frac{1}{4}\int_{0}^{\pi/4} (1+\cos2 u)^2du\\ &= \frac{1}{4}\int_{0}^{\pi/4}\left(1+2 \cos 2 u+\cos ^{2} 2 u\right) du\\ &=\int_{0}^{\pi/4}\left(\frac{1}{2} \cos 2 u+\frac{3}{8}+\frac{1}{8} \cos 4 u\right) du\\ &=\frac{1}{4} \sin 2 u+\frac{3}{8}u+\frac{1}{32} \sin 4 u\bigg|_{0}^{\pi/4}\\ &= \frac{1}{4}+\frac{3 \pi}{32} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.