Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.3 Trigonometric Substitution - Exercises - Page 410: 33

Answer

$$\int \frac{d x}{x^{2}+a}=\frac{1}{\sqrt{a}} \tan ^{-1} \frac{x}{\sqrt{a}}+C$$

Work Step by Step

Given $$\int \frac{d x}{x^{2}+a} $$ Let $$x=\sqrt{a}\tan u\ \ \ \ \ \to \ \ \ \ dx=\sqrt{a}\sec^2 u du$$ Then \begin{align*} \int \frac{d x}{x^{2}+a} &=\int \frac{\sqrt{a}\sec^2 u du}{a\tan^{2}u+a} \\ &=\int \frac{\sqrt{a}\sec^2 u du}{a\sec^{2}u} \\ &=\frac{1}{\sqrt{a}}\int du\\ &=\frac{1}{\sqrt{a}} u\\ &=\frac{1}{\sqrt{a}} \tan ^{-1} \frac{x}{\sqrt{a}}+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.