Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.3 Trigonometric Substitution - Exercises - Page 410: 36

Answer

$$\sin^{-1}\left(\frac{x-6}{6}\right)+C$$

Work Step by Step

Given $$\int \frac{d x}{\sqrt{12 x-x^{2}}}$$ Since $$\int \frac{d x}{\sqrt{12 x-x^{2}}}= \int \frac{d x}{\sqrt{36-(x-6)^{2}}}$$ Let $$ x-6=6\sin u\ \ \ \ \ \ \ dx=6\cos udu$$ Then \begin{align*} \int \frac{d x}{\sqrt{12 x-x^{2}}}&=\int \frac{d x}{\sqrt{36-(x-6)^{2}}}\\ &= \int \frac{6\cos udu}{\sqrt{36-36\sin^{2}u}}\\ &=\int \frac{6\cos udu}{\sqrt{36(1-\sin^{2}u)}}\\ &=\int du\\ &=u+C\\ &=\sin^{-1}\left(\frac{x-6}{6}\right)+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.