Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.3 Trigonometric Substitution - Exercises - Page 410: 11

Answer

see below answer

Work Step by Step

direct substitution let $u$ = $x^{2}-4$ $du$ = $2xdx$ $I$ = $\int{\frac{xdx}{\sqrt {x^{2}-4}}}$ = $\frac{1}{2}\frac{du}{\sqrt u}$ = $\sqrt {u}+C$ = $\sqrt {x^{2}-4}+C$ trigonometric substitution let $x$ = $2secθ$ $dx$ = $2secθtanθdθ$ and $x^{2}-4$ = $4sec^{2}θ-4$ = $4tan^{2}θ$ so $I$ = $\int{\frac{xdx}{\sqrt {x^{2}-4}}}$ = $\int{\frac{2secθ(2secθtanθdθ)}{2tanθ}}$ = $2\int{sec^{2}θdθ}$ = $2tanθ+C$ $x$ = $2secθ$ $cosθ$ = $\frac{2}{x}$ $tanθ$ = $\frac{\sqrt {x^{2}-4}}{2}$ $I$ = $2tanθ+C$ = $2(\frac{\sqrt {x^{2}-4}}{2})+C$ = $\sqrt {x^{2}-4}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.