Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.3 Trigonometric Substitution - Exercises - Page 410: 29

Answer

$I$ = $\frac{1}{54}tan^{-1}(\frac{t}{3})+\frac{t}{18(t^{2}+9)}+C$

Work Step by Step

let $t$ = $3tanθ$ $dt$ = $3sec^{2}θdθ$ $I$ = $\int{\frac{dt}{(t^{2}+9)^{2}}}$ $I$ = $\int{\frac{3sec^{2}θdθ}{81sec^{4}θ}}$ $I$ = $\frac{1}{27}\int{cos^{2}θdθ}$ $I$ = $\frac{1}{27}[\frac{1}{2}θ+\frac{1}{2}sinθcosθ]+C$ $t$ = $3tanθ$ $tanθ$ = $\frac{t}{3}$ $sinθ$ = $\frac{t}{\sqrt {t^{2}+9}}$ $cosθ$ = $\frac{3}{\sqrt {t^{2}+9}}$ $I$ = $\frac{1}{27}[\frac{1}{2}θ+\frac{1}{2}sinθcosθ]+C$ $I$ = $\frac{1}{54}tan^{-1}(\frac{t}{3})+\frac{1}{54}(\frac{t}{\sqrt {t^{2}+9}})(\frac{3}{\sqrt {t^{2}+9}})+C$ $I$ = $\frac{1}{54}tan^{-1}(\frac{t}{3})+\frac{t}{18(t^{2}+9)}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.