Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.3 Trigonometric Substitution - Exercises - Page 410: 14

Answer

a) $\frac{t}{t^{2}+1}+C$ b) $-\frac{1}{\sqrt {t^{2}+1}}+C$

Work Step by Step

a) $t$ = $tanθ$ $dt$ = $sec^{2}θdθ$ $\int{\frac{dt}{(t^{2}+1)^{\frac{3}{2}}}}$ = $\int{\frac{sec^{2}θ}{(tan^{2}θ+1)^{\frac{3}{2}}}}dθ$ = $\int{cosθ}dθ$ = $sinθ+C$ $t$ = $tanθ$ $sinθ$ = $\frac{t}{t^{2}+1}$ $\int{\frac{dt}{(t^{2}+1)^{\frac{3}{2}}}}$ = $sinθ+C$ = $\frac{t}{t^{2}+1}+C$ b) $u$ = $t^{1}+1$ $du$ = $2tdt$ $\int{\frac{tdt}{(t^{2}+1)^{\frac{3}{2}}}}$ = $\frac{1}{2}\int{u^{-\frac{3}{2}}}du$ = $-u^{-\frac{1}{2}}+C$ = $-\frac{1}{\sqrt {t^{2}+1}}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.