Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.3 Trigonometric Substitution - Exercises - Page 409: 2

Answer

see below answer

Work Step by Step

a) let $x$ = ${\sqrt 2}secθ$ $dx$ = ${\sqrt 2}secθtanθdθ$ and $\sqrt {x^{2}-2}$ = $\sqrt {2sec^{2}θ-2}$ = $\sqrt {2(sec^{2}θ-1)}$ = $\sqrt {2tan^{2}θ}$ = $\sqrt 2{tanθ}$ so $I$ = $\frac{dx}{x^{2}\sqrt {x^{2}-2}}$ = $\int{\frac{\sqrt 2{}secθtanθdθ}{(2sec^{2}θ)(\sqrt {2}tanθ)}}$ = $\frac{1}{2}\int{\frac{dθ}{secθ}}$ = $\frac{1}{2}\int{cosθ}dθ$ = $\frac{1}{2}sinθ+C$ b) $x$ = ${\sqrt 2}secθ$ $cosθ$ = $\frac{\sqrt 2}{x}$ as file attached $sinθ$ = $\frac{\sqrt {x^{2}-2}}{x}$ c) $I$ = $\frac{1}{2}sinθ+C$ = $\frac{\sqrt {x^{2}-2}}{2x}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.