Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.3 Trigonometric Substitution - Exercises - Page 410: 12

Answer

$\frac{x}{2}\sqrt {x^{2}-4}+2\ln|x+\sqrt {x^{2}-4}|+C$

Work Step by Step

substitution $u$ = $x^{2}-4$ $du$ = $2xdx$ $I$ = $\int{\frac{x^{2}dx}{\sqrt {x^{2}-4}}}$ = $\int{\frac{u+4}{\sqrt u}}(\frac{du}{2\sqrt {u+4}})$ = $\frac{1}{2}\int{\frac{u+4}{\sqrt {u^{2}+4u}}}du$ so substitution is no effective for evaluating this integral trigonometric $x$ = $2secθ$ $dx$ = $3secθtanθdθ$ $I$ = $\int{\frac{x^{2}dx}{\sqrt {x^{2}-4}}}$ = $\int{\frac{4sec^{2}θ(2secθtanθ)dθ}{2tanθ}}$ = $4\int{sec^{3}θdθ}$ = $2tanθsecθ+2\ln|secθ+tanθ|+C$ $x$ = $2secθ$ $cosθ$ = $\frac{2}{x}$ $tanθ$ = $\frac{\sqrt {x^{2}-4}}{2}$ $I$ = $2tanθsecθ+2\ln|secθ+tanθ|+C$ $I$ = $2(\frac{1}{2}\sqrt {x^{2}-4})(\frac{x}{2})+2\ln|\frac{x}{2}+\frac{1}{2}\sqrt {x^{2}-4}|+C$ $I$ = $\frac{x}{2}\sqrt {x^{2}-4}+2\ln|\frac{1}{2}(x+\sqrt {x^{2}-4}|)+C$ $I$ = $\frac{x}{2}\sqrt {x^{2}-4}+2\ln|x+\sqrt {x^{2}-4}|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.