Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.3 Trigonometric Substitution - Exercises - Page 410: 8

Answer

$\frac{1}{4}[\sqrt {17}-\sqrt 5]$

Work Step by Step

let $x$ = $2tanθ$ $dx$ = $2sec^{2}θdθ$ and $\sqrt {x^{2}+4}$ = $\sqrt {4tan^{2}θ+4}$ = $secθ$ so $\int{\frac{dx}{x^{2}\sqrt {x^{2}+4}}}$ = $\int{\frac{2sec^{2}θdθ}{4tan^{2}θ(2secθ)}}$ = $\frac{1}{4}\int{\frac{cosθ}{sin^{2}θ}}dθ$ $u$ = $sinθ$ $du$ = $cosθdθ$ $\frac{1}{4}\int{\frac{cosθ}{sin^{2}θ}}dθ$ = $\frac{1}{4}\int{u^{-2}du}$ = $-\frac{1}{4sinθ}+C$ since $x$ = $2tanθ$ $sinθ$ = $\frac{x}{\sqrt {x^{2}+4}}$ $\int_{\frac{1}{2}}^{1}{\frac{dx}{x^{2}\sqrt {x^{2}+4}}}$ = $-\frac{\sqrt {x^{2}+4}}{4x}|_{\frac{1}{2}}^{1}$ = $\frac{1}{4}[\sqrt {17}-\sqrt 5]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.