Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 334: 48

Answer

$$y = \frac{1}{2}{\ln ^2}x - 2$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = \frac{{\ln x}}{x},{\text{ }}\left( {1, - 2} \right) \cr & {\text{Separate the variables}} \cr & dy = \frac{{\ln x}}{x}dx \cr & {\text{Integrate}} \cr & \int {dy} = \int {\frac{{\ln x}}{x}} dx \cr & y = \frac{1}{2}{\ln ^2}x + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Use the initial condition }}\left( {1, - 2} \right) \cr & - 2 = \frac{1}{2}{\ln ^2}\left( 1 \right) + C \cr & C = - 2 \cr & {\text{Substitute }}C{\text{ into }}\left( {\bf{1}} \right) \cr & y = \frac{1}{2}{\ln ^2}x - 2 \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.