Answer
$\sqrt{2x}-ln|1+\sqrt{2x}|+C$
Work Step by Step
$\int\frac{1}{1+\sqrt{2x}}dx$
let $\sqrt{2x} = (2x)^{\frac{1}{2}} = u$
$du=\frac{1}{2}(2x)^{-\frac{1}{2}}(2)dx$
$du=\frac{1}{\sqrt{2x}}dx$
$du=\frac{1}{u}dx$
$dx=u$ $du$
$\int\frac{1}{1+\sqrt{2x}}dx$
$=\int\frac{u}{1+u}du$
$=\int\frac{1+u-1}{1+u}du$
$=\int(1-\frac{1}{1+u})du$
$=u-ln|1+u|+C$
$=\sqrt{2x}-ln|1+\sqrt{2x}|+C$